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What is Data Warehouse?

o “Adata warehouse is a subject-oriented, integrated, time-variant, and nonvolatile collection

of data in support of management’s decision-making process.”—W. H. Inmon
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Data Warehouse—Subject-Oriented

o Organized around major subjects, such as customer, product, sales

o Focusing on the modeling and analysis of data for decision makers, not on
daily operations or transaction processing

o Provide a simple and concise view around particular subject issues by
excluding data that are not useful in the decision support process

UNIVERSITY OF TEXASAARLINGTON



Data Warehouse—Integrated

o Constructed by integrating multiple, heterogeneous data sources
o relational databases, flat files, on-line transaction records
o Data cleaning and data integration techniques are applied.

o Ensure consistency in naming conventions, encoding structures,
attribute measures, etc. among different data sources
o E.g., Hotel price: currency, tax, breakfast covered, etc.

o When data is moved to the warehouse, it is converted.

UNIVERSITY OF TEXASAARLINGTON



Data Warehouse—Time Variant

o The time horizon for the data warehouse is significantly longer than that of
operational systems

o Operational database: current value data
o Data warehouse data: provide information from a historical perspective
(e.g., past 5-10 years)
o Every key structure in the data warehouse
o Contains an element of time, explicitly or implicitly
o But the key of operational data may or may not contain “time element”
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Data Warehouse—
Nonvolatile

o A physically separate store of data transformed from the operational environment

o Operational update of data does not occur in the data warehouse environment

o Does not require transaction processing, recovery, and concurrency control
mechanisms

o Requires only two operations in data accessing:

o Initial loading of data and access of data
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Data Warehouse vs. Operational DBMS

o  OLTP (on-line transaction processing)
o Major task of traditional relational DBMS
o Day-to-day operations: purchasing, inventory, banking, manufacturing, payroll, registration,
accounting, etc.
o  OLAP (on-line analytical processing)
o Major task of data warehouse system
o Data analysis and decision making
o Distinct features (OLTP vs. OLAP):
User and system orientation: customer vs. market
Data contents: current, detailed vs. historical, consolidated
Database design: ER + application vs. star + subject
View: current, local vs. evolutionary, integrated
Access patterns: update vs. read-only but complex queries
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OLTP vs. OLAP

OLTP OLAP
users clerk, IT professional knowledge worker
function day to day operations decision support
DB design application-oriented subject-oriented
data current, up-to-date historical,
detailed, flat relational summarized, multidimensional
isolated integrated, consolidated
usage repetitive ad-hoc
access read/write lots of scans

index/hash on prim. key

unit of work

short, simple transaction

complex query

# records accessed tens millions

#users thousands hundreds

DB size 100MB-GB 100GB-TB

metric transaction throughput query throughput, response
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Data Cube

o A data warehouse is based on a multidimensional data model which
views data in the form of a data cube

o Adata cube contains aggregates of measure values, on various
combinations of dimensions, and furthermore, with various levels of
aggregation on individual dimension.

o In data warehousing literature, an n-D base cube is called a base
cuboid. The top most 0-D cuboid, which holds the highest-level of
summarization, is called the apex cuboid. The lattice of cuboids
forms a data cube.
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A 3-D Cuboid

o Sales volume as a function of product, month, and region

o Dimensions: Product, Location, Time
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An Example of Data Cube
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Data Cube: A Lattice of Cuboids

all
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A 4-D Data Cube

all

0-D(apex) cuboid
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A Concept Hierarchy on Location Dimension

all all

region Europe W

country Germany .. Spain Canada ... Mexico

city Frankfurt ... Vangouver ... Toronto
N N

office L.Chan .. M. Wind
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Concept Hierarchy in Data Cube
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Conceptual Schema Design

o Dimensions & Measures

o Dimension tables, such as product (item_name, brand, type), or time(day, week,
month, quarter, year)

o Fact table contains measures (such as dollars_sold) and keys to each of the related
dimension tables

UNIVERSITY OF TEXASAARLINGTON



Conceptual Modeling of Data Warehouses

— Star schema: A fact table in the middle connected to

a set of dimension tables
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Example of Star Schema

time
time key | item
day item_ke
LKCY
day_of the week g . Sales Fact Table item name
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Conceptual Modeling of Data Warehouses

— Snowflake schema: A refinement of star schema

where some dimensional hierarchy is normalized into
a set of smaller dimension tables, forming a shape
similar to snowflake

It provides explicit support of hierarchy
» Easier to manage the dimension
« Can be less efficient (due to join) than star schema
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Example of Snowflake
Schema

time
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Conceptual Modeling of Data Warehouses

— Fact constellations: Multiple fact tables share

dimension tables, viewed as a collection of stars,

therefore called galaxy schema or fact constellation
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Example of Fact
Constellatlon

time IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
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Typical OLAP Operations

o Roll up (drill-up): summarize data
o by climbing up hierarchy or by dimension reduction

o  Drill down (roll down): reverse of roll-up

o from higher level summary to lower level summary or detailed data, or intfroducing new
dimensions

o Slice and dice: project and select

o Pivot (rotate):
o reorient the cube, visualization, 3D to series of 2D planes
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Roll up and Drill Down

* Roll up: increasing the level of aggregation
— further aggregating along one more dimension

— or further aggregating along the hierarchy of one
dimension

« Drill down: decreasing the level of aggregating

It is like traversing in the lattice of cuboids.
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Typical OLAP Operations
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Efficient Data Cube Computation

o Data cube can be viewed as a lattice of cuboids
o The bottom-most cuboid is the base cuboid
o The top-most cuboid (apex) contains only one cell
o How many cuboids in an n-dimensional cube with L levels?

14
7= il;[l (Li +1)
o Materialization of data cube
o Materialize every (cuboid) (full materialization), none (no materialization), or some
(partial materialization)

o Selection of which cuboids to materialize
o Based on size, sharing, access frequency, etc.
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Measures of Data Cube: Three Categorles

Consider aggregating a two dimensional set of values {(Xijli=1,...,I; j=1,...,J}.
Aggregate functions can be classified into three categories:

Distributive: Aggregate function F () is distributive if there is a function G() such that
FU{X,;)H)=G{F({X;;li=1,...,I})|j=1,...J}). couNT(), MINCO), MAXQ),
SUM() are all distributive. In fact, F = G for all but COUNT(). G = suM() for the
COUNT() function. Once order is imposed, the cumulative aggregate functions also fit
in the distributive class.

Algebraic: Aggregate function F() 1s algebraic if there 1s an M-tuple valued function G()
and afunction H () suchthat F({X; ;}) = H{G({X, ; [i=1,..., 1} | j=1,..., J}).
Average(), standard deviation, MaxN(), MinN(), center_of_mass() are all algebraic. For
Average, the function G () records the sum and count of the subset. The H () function
adds these two components and then divides to produce the global average. Similar
techniques apply to finding the N largest values, the center of mass of group of objects,
and other algebraic functions. The key to algebraic functions is that a fixed size result
(an M-tuple) can summarize the sub-aggregation.

Holistic: Aggregate function F() 1s holistic if there is no constant bound on the size of

the storage needed to describe a sub-aggregate. That is, there i1s no constant M, such

that an M-tuple characterizes the computation F({X;; | i = 1,...,1}). Median(),

MostFrequent() (also called the Mode()), and Rank() are common examples of holistic

functions.




