CSE4334/5334 Data Mining Classification: Bayesian Classifiers

Chengkai Li

Department of Computer Science and Engineering
University of Texas at Arlington
Fall 2020 (Slides courtesy of Pang-Ning Tan, Michael Steinbach and Vipin Kumar)

Bayes Classifier

A probabilistic framework for solving classification problems

Conditional Probability:

$$
\begin{aligned}
& P(Y \mid X)=\frac{P(X, Y)}{P(X)} \\
& P(X \mid Y)=\frac{P(X, Y)}{P(Y)}
\end{aligned}
$$

Bayes theorem:

$$
P(Y \mid X)=\frac{P(X \mid Y) P(Y)}{P(X)}
$$

Example of Bayes Theorem

Given:

- A doctor knows that meningitis causes stiff neck 50% of the time
- Prior probability of any patient having meningitis is $1 / 50,000$
- Prior probability of any patient having stiff neck is $1 / 20$

If a patient has stiff neck, what's the probability
he/she has meningitis?

$$
P(M \mid S)=\frac{P(S \mid M) P(M)}{P(S)}=\frac{0.5 \times 1 / 50000}{1 / 20}=0.0002
$$

Using Bayes Theorem for Classification

Consider each attribute and class label as random variables

Given a record with attributes $\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{d}}\right)$

- Goal is to predict class Y
- Specifically, we want to find the value of Y that maximizes $\mathrm{P}\left(\mathrm{Y} \mid \mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{d}}\right)$

Can we estimate $\mathrm{P}\left(\mathrm{Y} \mid \mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{d}}\right)$ directly

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125 K	No
2	No	Married	100 K	No
3	No	Single	70 K	No
4	Yes	Married	120 K	No
5	No	Divorced	95 K	Yes
6	No	Married	60 K	No
7	Yes	Divorced	220 K	No
8	No	Single	85 K	Yes
9	No	Married	75 K	No
10	No	Single	90 K	Yes

Using Bayes Theorem for Classification

Approach:

- compute posterior probability $\mathrm{P}\left(\mathrm{Y} \mid \mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{d}}\right)$ using the Bayes theorem

$$
P\left(Y \mid X_{1} X_{2} \ldots X_{d}\right)=\frac{P\left(X_{1} X_{2} \ldots X_{d} \mid Y\right) P(Y)}{P\left(X_{1} X_{2} \ldots X_{d}\right)}
$$

- Maximum a-posteriori: Choose Y that maximizes

$$
\mathrm{P}\left(\mathrm{Y} \mid \mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{d}}\right)
$$

- Equivalent to choosing value of Y that maximizes

$$
\mathrm{P}\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{d}} \mid \mathrm{Y}\right) \mathrm{P}(\mathrm{Y})
$$

How to estimate $\mathrm{P}\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{d}} \mid \mathrm{Y}\right)$?

Example Data

Given a Test Record:

Tid		Refund	Marital Status	Taxable Income
1	Yes	Single	125 K	No
2	No	Married	100 K	No
3	No	Single	70 K	No
4	Yes	Married	120 K	No
5	No	Divorced	95 K	Yes
6	No	Married	60 K	No
7	Yes	Divorced	220 K	No
8	No	Single	85 K	Yes
9	No	Married	75 K	No
10	No	Single	90 K	Yes

$$
X=(\text { Refund }=\text { No, Divorced, Income }=120 \mathrm{~K})
$$

- Can we estimate
$\mathrm{P}($ Evade $=$ Yes $\mid \mathrm{X})$ and $\mathrm{P}($ Evade $=$ No $\mid \mathrm{X})$?

In the following we will replace
Evade $=$ Yes by Yes, and
Evade $=$ No by No

Example Data

Given a Test Record:

Tid	Refund	Marital Status	Taxable Income	
1	Yes	Single	125 K	No
2	No	Married	100 K	No
3	No	Single	70 K	No
4	Yes	Married	120 K	No
5	No	Divorced	95 K	Yes
6	No	Married	60 K	No
7	Yes	Divorced	220 K	No
8	No	Single	85 K	Yes
9	No	Married	75 K	No
10	No	Single	90 K	Yes

$$
X=(\text { Refund }=\text { No, Divorced, Income }=120 \mathrm{~K})
$$

Using Bayes Theorem:

$$
\begin{aligned}
& \mathrm{P}(\mathrm{Yes} \mid \mathrm{X})=\frac{\mathrm{P}(\mathrm{X} \mid \mathrm{Yes}) \mathrm{P}(\mathrm{Yes})}{\mathrm{P}(\mathrm{X})} \\
& \mathrm{P}(\mathrm{No} \mid \mathrm{X})=\frac{\mathrm{P}(\mathrm{X} \mid \mathrm{No}) \mathrm{P}(\mathrm{No})}{\mathrm{P}(\mathrm{X})}
\end{aligned}
$$

- How to estimate

$$
\mathrm{P}(\mathrm{X} \mid \mathrm{Yes}) \text { and } \mathrm{P}(\mathrm{X} \mid \mathrm{No}) \text { ? }
$$

Conditional Independence

\mathbf{X} and \mathbf{Y} are independent if $\mathrm{P}(\mathbf{X} \mid \mathbf{Y})=\mathrm{P}(\mathbf{X})$ and $\mathrm{P}(\mathbf{Y} \mid \mathbf{X})=\mathrm{P}(\mathbf{Y})$
\mathbf{X} and \mathbf{Y} are conditionally independent given \mathbf{Z} if $\mathrm{P}(\mathbf{X} \mid \mathbf{Y Z})=\mathrm{P}(\mathbf{X} \mid \mathbf{Z})$ and $\mathrm{P}(\mathbf{Y} \mid \mathbf{X Z})=\mathrm{P}(\mathbf{Y} \mid \mathbf{Z})$

Example: Arm length and reading skills

- Young child has shorter arm length and limited reading skills, compared to adults
- If age is fixed, no apparent relationship between arm length and reading skills
- Arm length and reading skills are conditionally independent given age

Naïve Bayes Classifier

Assume independence among attributes X_{i} when class is given:
$\circ \mathrm{P}\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{d}} \mid \mathrm{Y}\right)=\mathrm{P}\left(\mathrm{X}_{1} \mid \mathrm{Y}\right) \mathrm{P}\left(\mathrm{X}_{2} \mid \mathrm{Y}\right) \ldots \mathrm{P}\left(\mathrm{X}_{\mathrm{d}} \mid \mathrm{Y}\right)$

- Now we can estimate $\mathrm{P}\left(\mathrm{X}_{\mathrm{i}} \mid \mathrm{Y}\right)$ for all value combinations of X_{i} and Y from the training data
- New point is classified to y if $\mathrm{P}(\mathrm{y}) \Pi \mathrm{P}\left(\mathrm{X}_{\mathrm{i}} \mid \mathrm{y}\right)$ is maximal.

Putting Everything Together

Problem: Choose value of Y that maximizes $\mathrm{P}\left(\mathrm{Y} \mid \mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{d}}\right)$

$$
\begin{aligned}
& \mathrm{P}\left(\mathrm{Y} \mid \mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{d}}\right) \\
& =\frac{\mathrm{P}\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{Xd} \mid \mathrm{Y}\right) \mathrm{P}(\mathrm{Y})}{\mathrm{P}\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{Xd}\right)} \text { (Bayes Theorem) } \\
& =\frac{\mathrm{P}\left(\mathrm{X}_{1} \mid \mathrm{Y}\right) \mathrm{P}\left(\mathrm{X}_{2} \mid \mathrm{Y}\right) \ldots \mathrm{P}(\mathrm{Xd} \mid \mathrm{Y}) \mathrm{P}(\mathrm{Y})}{\mathrm{P}\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{Xd}\right)} \text { (Under the Attribute Independence Assumption) } \\
& =\frac{\mathrm{P}(\mathrm{Y}) \prod_{i=1}^{d} \mathrm{P}(\mathrm{Xi} \mid \mathrm{Y})}{\mathrm{P}\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{Xd}\right)}
\end{aligned}
$$

Naïve Bayes on Example Data

Given a Test Record:

$$
X=(\text { Refund }=\text { No, Divorced, Income }=120 \mathrm{~K})
$$

Tid	Refund	Marital Status	Taxable Income	
1	Yes	Single	125 K	No
2	No	Married	100 K	No
3	No	Single	70 K	No
4	Yes	Married	120 K	No
5	No	Divorced	95 K	Yes
6	No	Married	60 K	No
7	Yes	Divorced	220 K	No
8	No	Single	85 K	Yes
9	No	Married	75 K	No
10	No	Single	90 K	Yes

$P(X \mid Y e s)=$
$P($ Refund $=$ No \mid Yes $) x$
P(Divorced \| Yes) x
$P($ Income $=120 \mathrm{~K} \mid$ Yes $)$
$P(X \mid N o)=$

$$
P(\text { Refund }=\text { No } \mid \text { No }) x
$$

$$
P(\text { Divorced } \mid \text { No }) x
$$

$$
P(\text { Income }=120 \mathrm{~K} \mid \mathrm{No})
$$

Estimate Probabilities from Data

Tid	Refund	Marital Status	Taxable Income	
1	Yes	Single	125 K	No
2	No	Married	100 K	No
3	No	Single	70 K	No
4	Yes	Married	120 K	No
5	No	Divorced	95 K	Yes
6	No	Married	60 K	No
7	Yes	Divorced	220 K	No
8	No	Single	85 K	Yes
9	No	Married	75 K	No
10	No	Single	90 K	Yes

$\mathrm{P}(\mathrm{y})=$ fraction of instances of class y

- e.g., $\mathrm{P}(\mathrm{No})=7 / 10$, $\mathrm{P}($ Yes $)=3 / 10$

For categorical attributes:

$$
\mathrm{P}\left(\mathrm{X}_{\mathrm{i}}=\mathrm{c} \mid \mathrm{y}\right)=\mathrm{n}_{\mathrm{c}} / \mathrm{n}
$$

- where $\left|X_{i}=c\right|$ is number of instances having attribute value $\mathrm{X}_{\mathrm{i}}=\mathrm{c}$ and belonging to class y
- Examples:
$\mathrm{P}($ Status $=$ Married \mid No $)=4 / 7$ $\mathrm{P}($ Refund $=$ Yes \mid Yes $)=0$

Estimate Probabilities from Data

For continuous attributes:
Discretize: partition the range into bins:

- Replace continuous value with bin value (Attribute changed from continuous to ordinal)

Probability density estimation:

- Assume attribute follows a normal distribution
- Use data to estimate parameters of distribution (e.g., mean and standard deviation)
- Once probability distribution is known, can use it to estimate the conditional probability $\mathrm{P}\left(\mathrm{X}_{\mathrm{i}} \mid \mathrm{Y}\right)$

How to Estimate Probabilities from Data?

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Normal distribution:

$$
P\left(X_{i} \mid Y_{j}\right)=\frac{1}{\sqrt{2 \pi \sigma_{i j}^{2}}} e^{-\frac{\left(X_{i}-\mu_{i j}\right)^{2}}{2 \sigma_{i j}}}
$$

- One for each $\left(\mathrm{X}_{\mathrm{i}}, \mathrm{Y}_{\mathrm{j}}\right)$ pair. $\left(\mathrm{X}_{\mathrm{i}}\right.$ is an attribute, Y_{j} is a class attribute value.
For (Income, Class=No):
- If Class=No
- sample mean $=110$
- sample variance $=2975$

$$
P(\text { Income }=120 \mid N o)=\frac{1}{\sqrt{2 \pi}(54.54)} e^{-\frac{(120-110)^{2}}{2(2975)}}=0.0072
$$

Example of Naïve Bayes Classifier

Given a Test Record:

$$
X=(\text { Refund }=\text { No, Divorced, Income }=120 \mathrm{~K})
$$

Naïve Bayes Classifier:

$\mathrm{P}($ Refund $=$ Yes \mid No $)=3 / 7$
$\mathrm{P}($ Refund $=$ No \mid No $)=4 / 7$
$\mathrm{P}($ Refund $=$ Yes \mid Yes $)=0$
$\mathrm{P}($ Refund $=\mathrm{No} \mid$ Yes $)=1$
$\mathrm{P}($ Marital Status $=$ Single \mid No $)=2 / 7$
$\mathrm{P}($ Marital Status $=$ Divorced \mid No $)=1 / 7$
$\mathrm{P}($ Marital Status $=$ Married \mid No $)=4 / 7$
$\mathrm{P}($ Marital Status $=$ Single \mid Yes $)=2 / 3$
$P($ Marital Status $=$ Divorced \mid Yes $)=1 / 3$
$\mathrm{P}($ Marital Status $=$ Married \mid Yes $)=0$
For Taxable Income:
If class $=$ No: sample mean $=110$

$$
\text { sample variance }=2975
$$

If class $=$ Yes: sample mean $=90$
sample variance $=25$

- $\mathrm{P}(\mathrm{X} \mid \mathrm{No})=\mathrm{P}$ (Refund=No $\mid \mathrm{No}$)
$\times \mathrm{P}($ Divorced \mid No $)$
$\times \mathrm{P}($ Income $=120 \mathrm{~K} \mid \mathrm{No})$
$=4 / 7 \times 1 / 7 \times 0.0072=0.0006$
- $\mathrm{P}(\mathrm{X} \mid$ Yes $)=\mathrm{P}$ (Refund=No \mid Yes $)$
$\times \mathrm{P}($ Divorced \mid Yes $)$
$\times \mathrm{P}$ (Income $=120 \mathrm{~K} \mid$ Yes)
$=1 \times 1 / 3 \times 1.2 \times 10^{-9}=4 \times 10^{-10}$

Since $\mathrm{P}(\mathrm{X} \mid \mathrm{No}) \mathrm{P}(\mathrm{No})>\mathrm{P}(\mathrm{X} \mid$ Yes $) \mathrm{P}($ Yes $)$
Therefore $\mathrm{P}(\mathrm{No} \mid \mathrm{X})>\mathrm{P}(\mathrm{Yes} \mid \mathrm{X})$

$$
=>\text { Class }=\text { No }
$$

Naïve Bayes Classifier can make decisions with partial information about attributes in the test record

Even in absence of information
about any attributes, we can use Apriori Probabilities of Class Variable:

Naïve Bayes Classifier:

```
\(\mathrm{P}(\) Refund \(=\) Yes \(\mid\) No \()=3 / 7\)
\(\mathrm{P}(\) Refund \(=\) No \(\mid\) No \()=4 / 7\)
\(\mathrm{P}(\) Refund \(=\) Yes \(\mid\) Yes \()=0\)
\(\mathrm{P}(\) Refund \(=\mathrm{No} \mid\) Yes \()=1\)
\(\mathrm{P}(\) Marital Status \(=\) Single \(\mid\) No \()=2 / 7\)
\(\mathrm{P}(\) Marital Status \(=\) Divorced \(\mid\) No \()=1 / 7\)
\(\mathrm{P}(\) Marital Status \(=\) Married \(\mid\) No \()=4 / 7\)
\(\mathrm{P}(\) Marital Status \(=\) Single \(\mid\) Yes \()=2 / 3\)
\(P(\) Marital Status \(=\) Divorced \(\mid\) Yes \()=1 / 3\)
\(\mathrm{P}(\) Marital Status \(=\) Married \(\mid\) Yes \()=0\)
\[
P(\text { Marital Status }=\text { Married } \mid \text { Yes })=0
\]
```

For Taxable Income:
If class $=$ No: sample mean $=110$
sample variance $=2975$
If class $=$ Yes: sample mean $=90$

$$
\begin{gathered}
\mathrm{P}(\mathrm{Yes})=3 / 10 \\
\mathrm{P}(\mathrm{No})=7 / 10
\end{gathered}
$$

If we only know that marital status is Divorced, then:

$$
\begin{aligned}
& \mathrm{P}(\text { Yes } \mid \text { Divorced })=1 / 3 \times 3 / 10 / \mathrm{P}(\text { Divorced }) \\
& \mathrm{P}(\text { No } \mid \text { Divorced })=1 / 7 \times 7 / 10 / \mathrm{P}(\text { Divorced })
\end{aligned}
$$

If we also know that Refund $=$ No, then

$$
\mathrm{P}(\text { Yes } \mid \text { Refund }=\text { No, Divorced })=1 \times 1 / 3 \times 3 / 10 /
$$

$P($ Divorced, Refund $=$ No)

$$
\begin{gathered}
\mathrm{P}(\text { No } \mid \text { Refund }=\text { No, Divorced })=4 / 7 \times 1 / 7 \times 7 / 10 / \\
\mathrm{P}(\text { Divorced, Refund }=\text { No })
\end{gathered}
$$

If we also know that Taxable Income $=120$, then

$$
\begin{array}{r}
\mathrm{P}(\text { Yes } \mid \text { Refund }=\text { No, Divorced, Income }=120)= \\
1.2 \times 10^{-9} \times 1 \times 1 / 3 \times 3 / 10 / \\
\mathrm{P}(\text { Divorced, Refund }=\text { No, Income }=120) \\
\mathrm{P}(\text { No } \mid \text { Refund }=\text { No, Divorced Income }=120)= \\
0.0072 \times 4 / 7 \times 1 / 7 \times 7 / 10 / \\
\mathrm{P}(\text { Divorced, Refund }=\text { No, Income }=120)
\end{array}
$$

For Taxable Income:
If class $=$ No: sample mean $=110$

$$
\text { sample variance }=25
$$

Issues with Naïve Bayes Classifier

Given a Test Record:

$$
\mathrm{X}=\text { (Married) }
$$

Naïve Bayes Classifier:

$\mathrm{P}($ Refund $=$ Yes \mid No $)=3 / 7$
$P($ Refund $=$ No \mid No $)=4 / 7$
$\mathrm{P}($ Refund $=$ Yes \mid Yes $)=0$
$\mathrm{P}($ Refund $=\mathrm{No} \mid$ Yes $)=1$
$\mathrm{P}($ Marital Status $=$ Single \mid No $)=2 / 7$
$\mathrm{P}($ Marital Status $=$ Divorced \mid No $)=1 / 7$
$\mathrm{P}($ Marital Status $=$ Married \mid No $)=4 / 7$
$\mathrm{P}($ Marital Status $=$ Single \mid Yes $)=2 / 3$
$\mathrm{P}($ Marital Status $=$ Divorced \mid Yes $)=1 / 3$
$\mathrm{P}($ Marital Status $=$ Married \mid Yes $)=0$
For Taxable Income:
If class $=$ No: sample mean $=110$
sample variance $=2975$
If class $=$ Yes: sample mean $=90$

$$
\begin{aligned}
& \mathrm{P}(\mathrm{Yes})=3 / 10 \\
& \mathrm{P}(\mathrm{No})=7 / 10
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{P}(\text { Yes } \mid \text { Married })=0 \times 3 / 10 / \mathrm{P}(\text { Married }) \\
& \mathrm{P}(\text { No } \mid \text { Married })=4 / 7 \times 7 / 10 / \mathrm{P}(\text { Married })
\end{aligned}
$$

Issues with Naïve Bayes Classifier

Consider the table with Tid $=7$ deleted
Naïve Bayes Classifier:

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Given $\mathrm{X}=($ Refund $=$ Yes, Divorced, 120K)
$\mathrm{P}(\mathrm{X} \mid \mathrm{No})=2 / 6 \mathrm{X} 0 \mathrm{X} 0.0083=0$
$\mathrm{P}(\mathrm{X} \mid \mathrm{Yes})=0 \mathrm{X} \mathrm{1/3} \mathrm{X} \mathrm{1.2} \mathrm{X} 10^{-9}=0$

$$
\begin{aligned}
& \mathrm{P}(\text { Refund }=\text { Yes } \mid \text { No })=2 / 6 \\
& P(\text { Refund }=\text { No } \mid \text { No })=4 / 6 \\
& \mathrm{P}(\text { Refund }=\text { Yes } \mid \text { Yes })=0 \\
& \mathrm{P} \text { (Refund }=\text { No } \mid \text { Yes) }=1 \\
& P(\text { Marital Status }=\text { Single } \mid \text { No })=2 / 6 \\
& \longrightarrow P(\text { Marital Status }=\text { Divorced } \mid \text { No })=0 \\
& P(\text { Marital Status }=\text { Married } \mid \text { No })=4 / 6 \\
& \mathrm{P}(\text { Marital Status }=\text { Single } \mid \text { Yes })=2 / 3 \\
& \mathrm{P}(\text { Marital Status }=\text { Divorced } \mid \text { Yes })=1 / 3 \\
& \mathrm{P}(\text { Marital Status }=\text { Married } \mid \text { Yes })=0 / 3 \\
& \text { For Taxable Income: } \\
& \text { If class }=\text { No: sample mean }=91 \\
& \text { sample variance }=685 \\
& \text { If class }=\text { No: sample mean }=90 \\
& \text { sample variance }=25
\end{aligned}
$$

Naïve Bayes will not be able to classify

$$
\mathrm{X} \text { as Yes or No! }
$$

Issues with Naïve Bayes Classifier

- If one of the conditional probability is zero, then the entire expression becomes zero.
- Need to use other estimates of conditional probabilities than simple fractions.
- Probability estimation:
n : number of training instances belonging to class y
original: $P\left(X_{i}=c \mid y\right)=\frac{n_{c}}{n}$
n_{c} : number of instances with $X_{i}=c$ and Y $=y$
v : total number of attribute values that X_{i} can take
p : initial estimate of
$\mathrm{P}\left(X_{i}=c\lfloor y)\right.$ known apriori, e.g., $1 / \mathrm{v}$, or
m - estimate: $P\left(X_{i}=c \mid y\right)=\frac{n_{c}+m p}{n+m}$ something else
m : hyper-parameter for our confidence in p

Example of Naïve Bayes Classifier

Name	Give Birth	Can Fly	Live in Water	Have Legs	Class
human	yes	no	no	yes	mammals
python	no	no	no	no	non-mammals
salmon	no	no	yes	no	non-mammals
whale	yes	no	yes	no	mammals
frog	no	no	sometimes	yes	non-mammals
komodo	no	no	no	yes	non-mammals
bat	yes	yes	no	yes	mammals
pigeon	no	yes	no	yes	non-mammals
cat	yes	no	no	yes	mammals
leopard shark	yes	no	yes	no	non-mammals
turtle	no	no	sometimes	yes	non-mammals
penguin	no	no	sometimes	yes	non-mammals
porcupine	yes	no	no	yes	mammals
eel	no	no	yes	no	non-mammals
salamander	no	no	sometimes	yes	non-mammals
gila monster	no	no	no	yes	non-mammals
platypus	no	no	no	mammals	
owl	no	yes	no	non-mammals	
dolphin	yes	no	yes	no	mammals
eagle	no	yes	no	yes	non-mammals

A: attributes

M: mammals

N : non-mammals

$$
\begin{aligned}
& P(A \mid M)=\frac{6}{7} \times \frac{6}{7} \times \frac{2}{7} \times \frac{2}{7}=0.06 \\
& P(A \mid N)=\frac{1}{13} \times \frac{10}{13} \times \frac{3}{13} \times \frac{4}{13}=0.0042 \\
& P(A \mid M) P(M)=0.06 \times \frac{7}{20}=0.021 \\
& P(A \mid N) P(N)=0.004 \times \frac{13}{20}=0.0027
\end{aligned}
$$

$$
\mathrm{P}(\mathrm{~A} \mid \mathrm{M}) \mathrm{P}(\mathrm{M})>\mathrm{P}(\mathrm{~A} \mid \mathrm{N}) \mathrm{P}(\mathrm{~N})
$$

Give Birth yes	no	Can Fly	Live in Water nes	Have Legs

Naïve Bayes (Summary)

- Robust to isolated noise points
- Handle missing values by ignoring the instance during probability estimate calculations
- Robust to irrelevant attributes
- Redundant and correlated attributes will violate class conditional assumption
- Use other techniques such as Bayesian Belief Networks (BBN)

How does Naïve Bayes perform on the following dataset?

Conditional independence of attributes is violated

Bayesian Belief Networks

- Provides graphical representation of probabilistic relationships among a set of random variables
- Consists of:
- A directed acyclic graph (dag)
- Node corresponds to a variable
- Arc corresponds to dependence
 relationship between a pair of variables
- A probability table associating each node to its immediate parent

Conditional Independence

D is parent of C
A is child of C
B is descendant of D
D is ancestor of A

A node in a Bayesian network is conditionally independent of all of its nondescendants, if its parents are known

Conditional Independence

Naïve Bayes assumption:

Probability Tables

- If X does not have any parents, table contains prior probability $\mathrm{P}(\mathrm{X})$
- If X has only one parent (Y), table contains conditional probability $\mathrm{P}(\mathrm{X} \mid \mathrm{Y})$
- If X has multiple parents $\left(\mathrm{Y}_{1}, \mathrm{Y}_{2}, \ldots, \mathrm{Y}_{\mathrm{k}}\right)$, table contains conditional probability $\mathrm{P}\left(\mathrm{X} \mid \mathrm{Y}_{1}\right.$, Y_{2}, \ldots, Y_{k})

Example of Bayesian Belief Network

Diet=Healthy	0.25
Diet=Unhealthy	0.75

Example of Inferencing using BBN

- Given: $\mathrm{X}=(\mathrm{E}=\mathrm{No}, \mathrm{D}=$ Yes, $\mathrm{CP}=$ Yes, $\mathrm{BP}=$ High $)$
- Compute P(HD|E,D,CP,BP)?

```
- \(\mathrm{P}(\mathrm{HD}=\mathrm{Yes} \mid \mathrm{E}=\mathrm{No}, \mathrm{D}=\mathrm{Yes})=0.55\)
    \(\mathrm{P}(\mathrm{CP}=\mathrm{Yes} \mid \mathrm{HD}=\mathrm{Yes})=0.8\)
    \(\mathrm{P}(\mathrm{BP}=\) High \(\mid \mathrm{HD}=\mathrm{Yes})=0.85\)
    - \(\mathrm{P}(\mathrm{HD}=\mathrm{Yes} \mid \mathrm{E}=\mathrm{No}, \mathrm{D}=\mathrm{Yes}, \mathrm{CP}=\mathrm{Yes}, \mathrm{BP}=\) High \()\)
        \(\propto 0.55 \times 0.8 \times 0.85=0.374\)
```

- $\mathrm{P}(\mathrm{HD}=\mathrm{No} \mid \mathrm{E}=\mathrm{No}, \mathrm{D}=\mathrm{Yes})=0.45$
$\mathrm{P}(\mathrm{CP}=\mathrm{Yes} \mid \mathrm{HD}=\mathrm{No})=0.01$
$\mathrm{P}(\mathrm{BP}=$ High $\mid \mathrm{HD}=\mathrm{No})=0.2$
- $\mathrm{P}(\mathrm{HD}=\mathrm{No} \mid \mathrm{E}=\mathrm{No}, \mathrm{D}=\mathrm{Yes}, \mathrm{CP}=\mathrm{Yes}, \mathrm{BP}=\mathrm{High})$ $\propto 0.45 \times 0.01 \times 0.2=0.0009$

